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Preface by the Editor

As the book title says, this is the famous set theory book Naive Set Theory by
Paul Richard Halmos, first published in 1960 by D. Van Nostrand Company,
INC., part of a series called The University Series in Undergraduate Mathemat-
ics.

What the title doesn’t say is that this version is an independent re-edition. The
original work is currently public domain in Hathi Trust Digital Library — the
reader probably found (or could find) the original digitized book on Google by
just searching for its title. This version was written in LaTeX and first released
on July 14, 2023, available for free to download on my Github repository. After
the initial release, some people have already made contributions in fixing typos
and further improving the re-edition. I extend here my gratitude to these people
for helping me and keeping the spirit of the re-edition alive.

Even though the book was freely available online, there are three reasons for this
project. First, the book in its digitized state is perfectly readable, but it doesn’t
allow searching words with Command-F (mac), Ctrl-F (windows), Ctrl-F (linux)
and doesn’t have a interactable summary with it. The second is to update the
book by correcting the errors in the original version, following the published
errata - as noticed, and updated in this edition, by Michał Zdunek. The third
reason is purely personal, I have a passion and gratitude for this book and, while
I want to learn OCR, I decided to re-edit it as a homage.

Some notes on this re-edition are necessary. The book page format is B5 paper
with font size 12pt. The margins of the book should be perfectly suitable for
printing. The mainly differences with the original editions are the cover and
the chapters title page designs. The mathematical symbol which denotes set
inclusion in the original is (𝜖), but I opted to use (∈) since it’s used regularly
nowadays for this case. Besides this, I didn’t change anything from the text.
Therefore, any mistakes — which I hope are non-existent or, at least, few — are
solely mine, and if someone finds any please contact me via e-mail.

As mentioned, the original book is public domain and, so, freely available in
the internet. Therefore, the resulting re-edition of the book at the end of this
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Preface by the Editor

project has no lucrative ends by any means. This re-edition cannot be used for
any commercial purposes.

I thought about writting a short story about Paul R. Halmos, since it’s common
for books to do this specially after the author has deceased. However, I couldn’t
do a better job than someone just searching on Google and/or Wikipedia. So,
for now, I will just say that this book has a special place in my heart. It was one
of the first works that introduced and helped me push througth writting proofs.
And at the end, I fell in love not only with it, but with mathematics overall. I
hope that anybody that found this version can have the same outcome as I did.
Now read it, absorb it and forget it.

Matheus Girola Macedo Barbosa - 01/07/2024
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Preface by the Author

Every mathematician agrees that every mathematician must know some set
theory; the disagreement begins in trying to decide how much is some. This
book contains my answer to that question. The purpose of the book is to tell the
beginning student of advanced mathematics the basic set-theoretic facts of life,
and to do so with the minimum of philosophical discourse and logical formalism.
The point of view throughout is that prospective mathematician anxious to
study groups, or integrals, or manifolds. From this point of view the concepts
and methods of this book are merely some of the standard mathematical tools;
the expert specialist will find nothing new here.

Scholarly bibliographical credits and references are out of place in a purely ex-
pository book such as this one. The student who gets interested in set theory
for its own sake should know, bowever, that there is much more to the subject
than there is in this book. One of the most beautiful sources of set-theoretic
wisdom is still Hausdorff’s Set theory. A recent and highly readable addition to
the literature, with an extensive and up-to-date bibliography, is Axiomatic set
theory by Suppes.

In set theory “naive” and “axiomatic” are contrasting words. The present treat-
ment might best be described as axiomatic set theory from the naive point of
view. It is axiomatic in that some axioms for set theory are stated and used
as the basis of all subsequent proofs. It is naive in that the language and no-
tation are those of ordinary informal (but formalizable) mathematics. A more
important way in which the naive point view predominates is that set theory
is regarded as a body of facts, of which the axioms are a brief and convenient
summary; in the orthodox axiomatic view the logical relations among various
axioms are the central objects of study. Analogously, a study of geometry might
be regarded purely naive if it proceeded on the paper-folding kind of intuition
alone; the other extreme, the purely axiomatic one, is the one in which axioms
for the various non-Euclidean geometries are studied with the same amount of
attention as Euclid’s. The analogue of the point of view of this book is the
study of just one sane set of axioms with the intention of describing Euclidean
geometry only.
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Preface by the Author

Instead of Naive set theory a more honest title for the book would have been An
outline of the elements of naive set theory. “Elements” would warn the reader
that not everything is here; “outline” would warn him that even what is here
needs filling in. The style is usually informal to the point of conversational.
There are very few displayed theorems; most of the facts are just stated and
followed by a sketch of a proof, very much as they might be in a general de-
scriptive lecture. There are only a few exercises, officially so labelled, but, in
fact, most of the book is nothing but a long chain of exercises with hints. The
reader should continually ask himself whether he knows how to jump from one
hint to the next, and, accordingly, he should not be discouraged if he finds that
his reading rate is considerably slower than normal.

This is not to say that the contents of this book are unusually difficult or pro-
found. What is true is that the concepts are very general and very abstract,
and that, therefore, they may take some getting used to. It is a mathematical
truism, however, that the more generally a theorem applies, the less deep it
is. The student’s task in learning set theory is to steep himself in unfamiliar
but essentially shallow generalities till they become so familiar that they can be
used with almost no conscious effort. In other words, general set theory is pretty
trivial stuff really, but, if you want to be a mathematician, you need some, and
here it is; read it, absorb it, and forget it.

P. R. H.
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1 The Axiom of Extension

A pack of wolves, a bunch of grapes, or a flock of pigeons are all examples of
sets of things. The mathematical concept of a set can be used as the foundation
for all known mathematics. The purpose of this little book is to develop the
basic properties of sets. Incidentally, to avoid terminological monotony, we shall
sometimes say collection instead of set. The word “class” is also used in this
context, but there is a slight danger in doing so. The reason is that in some
approaches to set theory “class” has a special technical meaning. We shall have
occasion to refer to this again a little later.

One thing that the development will not include is a definition of sets. The
situation is analogous to the familiar axiomatic approach to elementary geometry.
That approach does not offer a definition of points and lines; instead it describes
what it is that one can do with those objects. The semi-axiomatic point of
view adopted here assumes that the reader has the ordinary, human, intuitive
(and frequently erroneous) understanding of what sets are; the purpose of the
exposition is to delineate some of the many things that one can correctly do
with them.

Sets, as they are usually conceived, have elements or members. An element of a
set may be a wolf, a grape, or a pigeon. It is important to know that a set itself
may also be an element of some other set. Mathematics is full of examples of
sets of sets. A line, for instance; is a set of points; the set of all lines in the plane
is a natural example of a set of sets (of points). What may be surprising is not
so much that sets may occur as elements, but that for mathematical purposes
no other elements need ever be considered. In this book, in particular, we shall
study set, and sets of sets, and similar towers of sometimes frightening height
and complexity — and nothing else. By way of examples we might occasionally
speak of sets of cabbages, and kings, and the like, but such usage is always to
be construed as an illuminating parable only, and not as a part of the theory
that is being developed.

The principal concept of set thoery, the one that in completely axiomatic studies
is the principal primitive (undefined) concept, is that of belonging. If 𝑥 belongs
to 𝐴 (𝑥 is an element of 𝐴, 𝑥 is contained in 𝐴), we shall write
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1 The Axiom of Extension

𝑥 ∈ 𝐴.

This version of the Greek letter epsilon is so often used to denote belonging that
its use to denote anything else is almost prohibited. Most authors relegate ∈
to its set-theoretic use forever and use 𝜀 when they need the fifth letter of the
Greek alphabet.

Perhaps a brief digression on alphabetic etiquette in set theory might be help-
ful. There is no compelling reason for using small and capital letters as in the
preceding paragraph; we might have written, and often will write, things like
𝑥 ∈ 𝑦 and 𝐴 ∈ 𝐵. Whenever possible, however, we shall informally indicate
the status of a set in a particular hierarchy under consideration by means of the
convention that letters at the beginning of the alphabet denote elements, and
letters at the end denote sets containing them; similarly letters of a relatively
simple kind denote elements, and letters of the larger and gaudier fonts denote
sets containing them. Examples: 𝑥 ∈ 𝐴, 𝐴 ∈ 𝑋, 𝑋 ∈ 𝒞.

A possible relation between sets, more elementary than belonging, is equality.
The equality of two sets 𝐴 and 𝐵 is universally denoted by the familiar symbol

𝐴 = 𝐵;

the fact that 𝐴 and 𝐵 are not equal is expressed by writing

𝐴 ≠ 𝐵.

The most basic property of belonging is its relation to equality, which can be
formulated as follows.

Axiom 1.1 (Axiom of extension). Two sets are equal if and only if they have
the same elements.

With greater pretentiousness and less clarity: a set is determined by its exten-
sion.

It is valuable to understand that the axiom of extension is not just a logically
necessary property of equality but a non-trivial statement about belonging. One
way to come to understand the point is to consider a partially analogous situation
in which the analogue of the axiom of extension does not hold. Suppose, for
instance, that we consider human beings instead of sets, and that, if 𝑥 and
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𝐴 are human beings, we write 𝑥 ∈ 𝐴 whenever 𝑥 is an ancestor of 𝐴. (The
ancestors of a human being are his parents, his parents’ parents, their parents,
etc., etc.) The analogue of the axiom of extension would say here that if two
human beings are equal, then they have the same ancestors (this is the “only if”
part, and it is true), and also that if two human being the same ancestors, then
they are equal (this is the “if” part, and it is false).

If 𝐴 and 𝐵 are sets and if every element of 𝐴 is an element of 𝐵, we say that 𝐴
is a subset of 𝐵, or 𝐵 includes 𝐴, and we write

𝐴 ⊂ 𝐵

or

𝐴 ⊃ 𝐵.

The wording of the definition implies that each set must be considered to be
included in itself (𝐴 ⊂ 𝐴); this fact is described by saying that set inclusion is
reflexive. (Note that; in the same sense of the word, equality also is reflexive.)
If 𝐴 and 𝐵 are sets such that 𝐴 ⊂ 𝐵 and 𝐴 ≠ 𝐵, the word proper is used
(proper subset, proper inclusion). If 𝐴, 𝐵, and 𝐶 are sets such that 𝐴 ⊂ 𝐵
and 𝐵 ⊂ 𝐶, then 𝐴 ⊂ 𝐶; this fact is described by saying that set inclusion is
transitive. (This property is also shared by equality.)

If 𝐴 and 𝐵 are sets such that 𝐴 ⊂ 𝐵 and 𝐵 ⊂ 𝐴, then 𝐴 and 𝐵 have the
same elements and therefore, by the axiom of extension, 𝐴 = 𝐵. This fact
is described by saying that set inclusion is antisymmetric. (In this respect set
inclusion behaves differently from equality. Equality is symmetric, in the sense
that if 𝐴 = 𝐵, then necessarily 𝐵 = 𝐴.) The axiom of extension can, in fact, be
reformulated in these terms: if 𝐴 and 𝐵 are sets, then a necessary and sufficient
condition that 𝐴 = 𝐵 is that both 𝐴 ⊂ 𝐵 and 𝐵 ⊂ 𝐴. Correspondingly , almost
all proofs of equalities between two sets 𝐴 and 𝐵 are split into two parts; first
show that 𝐴 ⊂ 𝐵, and then show that 𝐵 ⊂ 𝐴.

Observe that belonging (∈) and inclusion (⊂) are conceptually very different
indeed. One important difference has already manifested itself above: inclusion
is always reflexive, whereas it is not at all clear that belonging is ever reflexive.
That is: 𝐴 ⊂ 𝐴 is always true; is 𝐴 ∈ 𝐴 ever true? It is certainly not true of any
reasonable set that anyone has ever seen. Observe, along the same lines, that
inclusion is transitive, whereas belonging is not. Everyday examples, involving,
for instance, super-organizations whose members are organizations, will readily
occur to the interested reader.
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2 The Axiom of Specification

All the basic principles of set theory, except only the axiom of extension, are
designed to make new sets out of old ones. The first and most important of
these basic principles of set manufacture says, roughly speaking, that anything
intelligent one can assert about the elements of a set specifies a subset, namely,
the subset of those elements about which the assertion is true.

Before formulating this principle in exact terms, we look at a heuristic example.
Let 𝐴 be the set of all men. The sentence “𝑥 is married” is true for some of the
elements 𝑥 of 𝐴 and false for others. The principle we are illustrating is the one
that justifies the passage from the given set 𝐴 to the subset (namely, the set of
all married men) specified by the given sentence. To indicate the generation of
the subset, it is usually denoted by

{𝑥 ∈ 𝐴 ∶ 𝑥 is married}.

Similarly

{𝑥 ∈ 𝐴 ∶ 𝑥 is not married}

is the get of all bachelors;

{𝑥 ∈ 𝐴 ∶ the father of x is Adam}

is the set that contains Seth, Cain and Abel and nothing else; and

{𝑥 ∈ 𝐴 ∶ 𝑥 is the father of Abel}

is the set that contains Adam and nothing else. Warning: a box that contains
a hat and nothing else is not the same thing as a hat, and, in the same way, the
last set in this list of examples is not to be confused with Adam. The analogy
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2 The Axiom of Specification

between sets and boxes has many weak points, but sometimes it gives a helpful
picture of the facts.

All that is lacking for the precise general formulation that underlies the examples
above is a definition of sentence . Here is a quick and informal one. There are
two basic types of sentences, namely, assertions of belonging,

𝑥 ∈ 𝐴,

and assertions of equality,

𝐴 = 𝐵;

all other sentences are obtained from such atomic sentences by repeated appli-
cations of the usual logical operators, subject only to the minimal courtesies of
grammar and unambiguity. To make the definition more explicit (and longer) it
is necessary to append to it a list of the “usual logical operators” and the rules
of syntax. An adequate (and, in fact, redundant) list of the former contains
seven items:

and,
or (in the sense of “either — or — or both”),
not,
if—then—(or implies),
if and only if,
for some (or there exists),
for all.

As for the rules of sentence construction, they can be described as follows. (i)
Put “not” before a sentence and enclose the result between parentheses. (The
reason for parentheses, here and below, is to guarantee unambiguity. Note,
incidentally, that they make all other punctuation marks unnecessary. The
complete parenthetical equipment that the definition of sentences calls for is
rarely needed. We shall always omit as many perentheses as it seems safe to
omit without leading to confusion. In normal mathematical practice, to be
followed in this book, several different sizes and shapes of parentheses are used,
but that is for visual convenience only.) (ii) Put “and” or “or” or “if and only if”
between two sentences and enclose the result between parentheses. (iii) Replace
the dashes in “if—then—” by sentences and enclose the result in parentheses.
(iv) Replace the dash in “for some—” or in “for all—” by a letter, follow the
result by a sentence, and enclose the whole in parentheses. (If the letter used
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does not occur in the sentence, no harm is done. According to the usual and
natural convention “for some 𝑦 (𝑥 ∈ 𝐴)” just means “$ x �A$”. It is equally
harmless if the letter used has already been used with “for some—.” Recall that
“for some 𝑥 (𝑥 ∈ 𝐴)” means the same as “for some 𝑦 (𝑦 ∈ 𝐴)”; it follows that a
judicious change of notation will always avert alphabetic collisions.)

We are now ready to formulate the major principle of set theory, often referred
to by its German name Aussonderungsaxiom.

Axiom 2.1 (Axiom of specification). To every set 𝐴 and to every condition
𝑆(𝑥) corresponds a set 𝐵 whose elements are exactly those elements 𝑥 of 𝐴 for
which 𝑆(𝑥) holds.

A “condition” here is just a sentence. The symbolism is intended to indicate the
letter 𝑥 is free in the sentence 𝑆(𝑥); that means that 𝑥 occurs in 𝑆(𝑥) at least
once without being introduced by one of the phrases “for some 𝑥” or “for all
𝑥”. It is an immediate consequence of the axiom of extension that the axiom of
specification determines the set 𝐵 uniquely. To indicate the way 𝐵 is obtained
from 𝐴 and from 𝑆(𝑥) it is customary to write

𝐵 = {𝑥 ∈ 𝐴 ∶ 𝑆(𝑥)}.

To obtain an amusing and instructive application of the axiom of specification,
consider, in the role of 𝑆(𝑥), the sentence

not (𝑥 ∈ 𝑥).

It will be convenient, here and throughout, to write “𝑥 ∉ 𝐴” instead of “not
(𝑥 ∈ 𝐴)”; in this notation, the role of 𝑆(𝑥) is now played by

𝑥 ∉ 𝑥.

It follows that, whatever the set 𝐴 may be, if 𝐵 = 𝑥 ∈ 𝐴 ∶ 𝑥 ∉ 𝑥, then, for all
𝑦,

𝑦 ∈ 𝐵 if and only if (𝑦 ∈ 𝐴 and 𝑦 ∉ 𝑦). (2.1)

Can it be that 𝐵 ∈ 𝐴? We proceed to prove that the answer is no. Indeed,
if 𝐵 ∈ 𝐴, then either 𝐵 ∈ 𝐵 also (unlikely, but not obviously impossible), or
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2 The Axiom of Specification

else 𝐵 ∉ 𝐵. If 𝐵 ∈ 𝐵, then, by Equation 2.1, the assumption 𝐵 ∈ 𝐴 yields
𝐵 ∉ 𝐵—a contradiction. If 𝐵 ∉ 𝐵, then, by Equation 2.1 again, the assumption
𝐵 ∈ 𝐴 yields 𝐵 ∈ 𝐵—a contradiction again. This completes the proof that is
impossible, so that we must have 𝐵 ∉ 𝐴. The most interesting part of this
conclusion is that there exists something (namely 𝐵) that does not belong to
𝐴. The set 𝐴 in this argument was quite arbitrary. We have proved, in other
words, that

nothing contains everything,

or, more spectacularly

there is no universe.

“Universe” here is used in the sense of “universe of discourse,” meaning, in any
particular discussion, a set that contains all the objects that enter into that
discussion.

In older (pre-axiomatic) approaches to set theory, the existence of universe was
taken for granted, and the argument in the preceding paragraph was known as
the Russell’s paradox. The moral is that it is impossible, especially in mathemat-
ics, to get something for nothing. To specify a set, it is not enough to pronounce
some magic words (which may form a sentence such as “𝑥 ∉ 𝑧”); it is necessary
also to have at hand a set to whose elements the magic words apply.
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3 Unordered Pairs

For all that has been said so far, we might have been operating in a vacuum. To
give the discussion some substance, let us now officially assume that

there exists a set.

Since later on we shall formulate a deeper and more useful existential assumption,
this assumption plays a temporary role only. One consequence of this innocuous
seeming assumption is that there exists a set without any elements at all. Indeed,
if 𝐴 is a set, apply the axiom of specification to 𝐴 with the sentence “𝑥 ≠ 𝑥” (or,
for that matter, with any other universally false sentence). The result is the set
{𝑥 ∈ 𝐴 ∶ 𝑥 ≠ 𝑥}, and that set, clearly, has no elements. The axiom of extension
implies that there can be only one set with no elements. The usual symbol for
that set is

∅;

the set is called the empty set.

The empty set is a subset of every set, or, in other words, ∅ ⊂ 𝐴 for every
𝐴. To establish this, we might argue as follows. It is to be proved that every
element in ∅ belongs to 𝐴; since there are no elements in ∅, the condition is
automatically fulfilled. The reasoning is correct but perhaps unsatisfying. Since
it is a typical example of a frequent phenomenon, a condition holding in the
“vacuous” sense, a word of advice to the inexperienced reader might be in order.
To prove that something is true about the empty set, prove that it cannot be
false. How, for instance, could it be false that ∅ ⊂ 𝐴? It could be false only if ∅
had an element that did not belong to 𝐴. Since ∅ has no elements at all, this is
absurd. Conclusion: ∅ ⊂ 𝐴 is not false, and therefore ∅ ⊂ 𝐴 for every 𝐴.

The set theory developed so far is still a pretty poor thing; for all we know there
is only one set and that one is empty. Are there enough sets to ensure that every
set is an element of some set? Is it true that for any two sets there is a third one
that they both belong to? What about three sets, or four, or any number? We
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3 Unordered Pairs

need a new principle of set construction to resolve such questions. The following
principle is a good beginning.

Axiom 3.1 (Axiom of pairing). For any two sets there exists a set that they
both belong to.

Note that this is just the affirmative answer to the second question above.

To reassure worriers, let us hasten to observe that words such as “two,” “three,”
and “four,” used above, do not refer to the mathematical concepts bearing those
names, which will be defined later; at present such words are merely the ordi-
nary linguistic abbreviations for “something and then something else” repeated
an appropriate number of times. Thus, for instance, the axiom of pairing, in
unabbreviated form, says that if 𝑎 and 𝑏 are sets, then there exists a set 𝐴 such
that 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐴.

One consequence (in fact an equivalent formulation) of the axiom of pairing is
that for any two sets there exists a set that contains both of them and nothing
else. Indeed, if 𝑎 and 𝑏 are sets, and if 𝐴 is a set such that 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐴, then
we can apply the axiom of specification to 𝐴 with the sentence “𝑥 = 𝑎 or 𝑥 = 𝑏.”
Conclusion:

{𝑥 ∈ 𝐴 ∶ 𝑥 = 𝑎 or 𝑥 = 𝑏},

and that set, clearly, contains just 𝑎 and 𝑏. The axiom of extension implies that
there can be only one set with this property. The usual symbol for that set is

{𝑎, 𝑏};

the set is called the pair (or, by way of emphatic comparison with a subsequent
concept, the unordered pair) formed by 𝑎 and 𝑏.

If, temporarily, we refer to the sentence “𝑥 = 𝑎 or 𝑥 = 𝑏” as 𝑆(𝑥) , we may
express the axiom of pairing by saying that there exists a set 𝐵 such that

𝑥 ∈ 𝐵 if and only if 𝑆(𝑥). (3.1)

The axiom of specification, applied to a set 𝐴, asserts the existence of a set 𝐵
such that
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𝑥 ∈ 𝐵 if and only if (𝑥 ∈ 𝐴 and 𝑆(𝑥)). (3.2)

The relation between Equation 3.1 and Equation 3.2 typifies something that
occurs quite frequently. All the remaining principles of set construction are
pseudo-special cases of the axiom of specification in the sense in which Equa-
tion 3.1 is a pseudo-special case of Equation 3.2. They all assert the existence of a
set specified by a certain condition; if it were known in advance that there exists
a set containing all the specified elements, then the existence of a set containing
just them would indeed follow as a special case of the axiom of specification.

If 𝑎 is a set, we may form the unordered pairs {𝑎, 𝑎}. That unordered pair is
denoted by

{𝑎}

and is called the singleton of 𝑎; it is uniquely characterized by the statement
that it has 𝑎 as its only element. Thus, for instance, ∅ and {∅} are very different
sets; the former has no elements, whereas the latter has the unique element ∅.
To say that 𝑎 ∈ 𝐴 is equivalent to saying that {𝑎} ⊂ 𝐴.

The axiom of pairing ensures that every set is an element of some set and that
any two sets are simultaneously elements of some one and the same set. (The
corresponding questions for three and four and more sets will be answered later.)
Another pertinent comment is that from the assumptions we have made so far
we can infer the existence of very many sets indeed. For examples consider the
sets ∅, {∅}, {{∅}}, {{{∅}}}, etc.; consider the pairs, such as {∅, {∅}}, formed by
any two of them; consider the pairs formed by any two such pairs, or else the
mixed pairs formed by any singleton and any pair; proceed so on ad infinitum.

Exercise 3.1. Are all the sets obtained in this way distinct from one another?

Before continuing our study of set theory, we pause for a moment to discuss a
notational matter. It seems natural to denote the set 𝐵 described in Equation 3.1
by {𝑥 ∶ 𝑆(𝑥)}; in the special case that was there considered

{𝑥 ∶ 𝑥 = 𝑎 or 𝑥 = 𝑏} = {𝑎, 𝑏}.

We shall use this symbolism whenever it is convenient and permissible to do
so. If, that is, 𝑆(𝑥) is a condition on 𝑥 such that the 𝑥’s that 𝑆(𝑥) specifies
constitute a set, then we may denote that set by
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3 Unordered Pairs

{𝑥 ∶ 𝑆(𝑥)}.

In case 𝐴 is a set and 𝑆(𝑥) is (𝑥 ∈ 𝐴), then it is permissible to form {𝑥 ∶ 𝑆(𝑥)};
in fact

{𝑥 ∶ 𝑥 ∈ 𝐴} = 𝐴.

If 𝐴 is a set and 𝑆(𝑥) is an arbitrary sentence, it is permissible to form {𝑥 ∶ 𝑥 ∈
𝐴 and 𝑆(𝑥)}; this set is the same as {𝑥 ∈ 𝐴 ∶ 𝑆(𝑥)}. As further examples, we
note that

{𝑥 ∶ 𝑥 ≠ 𝑥} = ∅

and

{𝑥 ∶ 𝑥 = 𝑎} = {𝑎}.

In case 𝑆(𝑥) is (𝑥 ∉ 𝑥), or in case 𝑆(𝑥) is (𝑥 = 𝑥), the specified 𝑥’s do not
constitute a set.

Despite the maxim about never getting something for nothing, it seems a little
harsh to be told that certain sets are not really sets and even their names must
never be mentioned. Some approaches to set theory try to soften the blow by
making systematic use of such illegal sets but just not calling them sets; the
customary word is “class”. A precise explanation of what classes really are and
how they are used is irrelevant in the present approach. Roughly speaking, class
may be identified with a condition (sentence), or, rather, with the “extension”
of a condition.
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