References
Aigner, Martin, and Günter M. Ziegler. 2018. Proofs from
THE BOOK. Berlin, Heidelberg: Springer
Berlin Heidelberg. https://doi.org/10.1007/978-3-662-57265-8.
Bilaniuk, Stefan. 2009. A Problem Course in Mathematical Logic.
http://euclid.trentu.ca/math/sb/pcml/pcml.html.
Bourbaki, Nicolas. 2004. Theory of Sets. Berlin,
Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-59309-3.
Britton, Jolene. 2017. “Base Conversion
Guide UCR Math
135A.”
Church, Alonzo. 1996. Introduction to Mathematical Logic. 10th
ed. Princeton Landmarks in Mathematics and Physics. Princeton, NJ
Chichester, West Sussex: Princeton University Press.
Cunningham, Daniel W. 2016. Set Theory: A First Course.
Cambridge Mathematical Textbooks. New York, NY: Cambridge University
Press.
Dawson, John W. 2015. Why Prove It Again?:
Alternative Proofs in
Mathematical Practice. Cham: Springer
International Publishing. https://doi.org/10.1007/978-3-319-17368-9.
Dedekind, Richard, and Wooster Woodruff Beman. 1963. Essays on the
Theory of Numbers. Braunschweig.
Egré, Paul, and Hans Rott. 2021. “The Logic of
Conditionals.” In The Stanford
Encyclopedia of Philosophy, edited by
Edward N. Zalta, Winter 2021. Metaphysics Research Lab, Stanford
University. https://plato.stanford.edu/archives/win2021/entries/logic-conditionals/.
Enderton, Herbert B. 2009. Elements of Set Theory. Transferred
to digital print.; [Reprint of the ed. New York, 1977]. San Diego:
Academic Press.
Fagin, Ronald, ed. 1995. Reasoning about Knowledge. Cambridge,
Mass: MIT Press.
Forero Cuervo, Andrés. 2009. Matemática Estructural.
Universidad de los Andes, Colombia.
GeeksforGeeks. 2023. “Convert from Any Base to Decimal and Vice
Versa.” GeeksforGeeks. https://www.geeksforgeeks.org/dsa/convert-base-decimal-vice-versa/.
Halevi Fraenkel, Abraham Adolf. 1961. Abstract Set Theory. 2nd
ed. Vol. 12. Studies in Logic and the
Foundations of Mathematics. Amsterdam: North
Holland Publishing Company.
Halmos, Paul Richard. 2017. Naive Set Theory. Dover edition.
Mineola, New York: Dover Publications, Inc.
Herrlich, Horst. 2006. Axiom of Choice. 1st ed.
Vol. 1876. Lecture Notes in Mathematics.
Berlin/Heidelberg: Springer-Verlag. https://doi.org/10.1007/11601562.
Josefsson, Simon. 2006. “The Base16,
Base32, and Base64 Data
Encodings.” RFC4648. https://doi.org/10.17487/rfc4648.
Knuth, Donald Ervin. 1997. The Art of Computer Programming:
Seminumerical Algorithms. 3rd ed. Vol. 2.
Reading, Massachusetts: Addison-Wesley.
Łukasiewicz, Jan, and Ludwik Borkowski. 1970. Selected Works.
Studies in Logic and the Foundations of Mathematics. Amsterdam:
North-Holland Pub. Co.
Mendelson, Elliott. 2008. Number Systems and the Foundations of
Analysis. Mineola, N.Y: Dover Publications.
———. 2015. Introduction to Mathematical Logic. Sixth edition.
Textbooks in Mathematics. Boca Raton: CRC Press/Taylor & Francis
Group.
Peloquin, John. 2016. “The
Cantor-Schroeder-Bernstein
Theorem.” https://www.youtube.com/watch?v=IkoKttTDuxE.
Seroul, Raymond. 2000. Programming for Mathematicians.
Universitext. Berlin ; New York: Springer.
Stoll, Robert R. 1974. Sets, Logic, and Axiomatic Theories. 2.
ed. San Francisco, California: Freeman.
Tarski, Alfred. 1924. “Sur Les Ensembles Finis.”
Fundamenta Mathematicae 6: 45–95. https://doi.org/10.4064/fm-6-1-45-95.
Wasilewska, Anita. 2018. Logics for Computer
Science: Classical and
Non-Classical. Cham: Springer
International Publishing. https://doi.org/10.1007/978-3-319-92591-2.