References

Aigner, Martin, and Günter M. Ziegler. 2018. Proofs from THE BOOK. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-57265-8.
Bilaniuk, Stefan. 2009. A Problem Course in Mathematical Logic. http://euclid.trentu.ca/math/sb/pcml/pcml.html.
Bourbaki, Nicolas. 2004. Theory of Sets. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-59309-3.
Britton, Jolene. 2017. “Base Conversion Guide UCR Math 135A.”
Church, Alonzo. 1996. Introduction to Mathematical Logic. 10th ed. Princeton Landmarks in Mathematics and Physics. Princeton, NJ Chichester, West Sussex: Princeton University Press.
Cunningham, Daniel W. 2016. Set Theory: A First Course. Cambridge Mathematical Textbooks. New York, NY: Cambridge University Press.
Dawson, John W. 2015. Why Prove It Again?: Alternative Proofs in Mathematical Practice. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-17368-9.
Dedekind, Richard, and Wooster Woodruff Beman. 1963. Essays on the Theory of Numbers. Braunschweig.
Egré, Paul, and Hans Rott. 2021. “The Logic of Conditionals.” In The Stanford Encyclopedia of Philosophy, edited by Edward N. Zalta, Winter 2021. Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/win2021/entries/logic-conditionals/.
Enderton, Herbert B. 2009. Elements of Set Theory. Transferred to digital print.; [Reprint of the ed. New York, 1977]. San Diego: Academic Press.
Fagin, Ronald, ed. 1995. Reasoning about Knowledge. Cambridge, Mass: MIT Press.
Forero Cuervo, Andrés. 2009. Matemática Estructural. Universidad de los Andes, Colombia.
GeeksforGeeks. 2023. “Convert from Any Base to Decimal and Vice Versa.” GeeksforGeeks. https://www.geeksforgeeks.org/dsa/convert-base-decimal-vice-versa/.
Halevi Fraenkel, Abraham Adolf. 1961. Abstract Set Theory. 2nd ed. Vol. 12. Studies in Logic and the Foundations of Mathematics. Amsterdam: North Holland Publishing Company.
Halmos, Paul Richard. 2017. Naive Set Theory. Dover edition. Mineola, New York: Dover Publications, Inc.
Herrlich, Horst. 2006. Axiom of Choice. 1st ed. Vol. 1876. Lecture Notes in Mathematics. Berlin/Heidelberg: Springer-Verlag. https://doi.org/10.1007/11601562.
Josefsson, Simon. 2006. “The Base16, Base32, and Base64 Data Encodings.” RFC4648. https://doi.org/10.17487/rfc4648.
Knuth, Donald Ervin. 1997. The Art of Computer Programming: Seminumerical Algorithms. 3rd ed. Vol. 2. Reading, Massachusetts: Addison-Wesley.
Łukasiewicz, Jan, and Ludwik Borkowski. 1970. Selected Works. Studies in Logic and the Foundations of Mathematics. Amsterdam: North-Holland Pub. Co.
Mendelson, Elliott. 2008. Number Systems and the Foundations of Analysis. Mineola, N.Y: Dover Publications.
———. 2015. Introduction to Mathematical Logic. Sixth edition. Textbooks in Mathematics. Boca Raton: CRC Press/Taylor & Francis Group.
Peloquin, John. 2016. “The Cantor-Schroeder-Bernstein Theorem.” https://www.youtube.com/watch?v=IkoKttTDuxE.
Seroul, Raymond. 2000. Programming for Mathematicians. Universitext. Berlin ; New York: Springer.
Stoll, Robert R. 1974. Sets, Logic, and Axiomatic Theories. 2. ed. San Francisco, California: Freeman.
Tarski, Alfred. 1924. “Sur Les Ensembles Finis.” Fundamenta Mathematicae 6: 45–95. https://doi.org/10.4064/fm-6-1-45-95.
Wasilewska, Anita. 2018. Logics for Computer Science: Classical and Non-Classical. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-92591-2.